
Distributed DBMS - Concepts
A distributed database is a collection of multiple interconnected

databases, which are spread physically across various locations that

communicate via a computer network.

Features
 Databases in the collection are logically interrelated with each other. Often they

represent a single logical database.

 Data is physically stored across multiple sites. Data in each site can be managed

by a DBMS independent of the other sites.

 The processors in the sites are connected via a network. They do not have any

multiprocessor configuration.

 A distributed database is not a loosely connected file system.

 A distributed database incorporates transaction processing, but it is not

synonymous with a transaction processing system.

Distributed Database Management System
A distributed database management system (DDBMS) is a centralized

software system that manages a distributed database in a manner as if it

were all stored in a single location.

Features

 It is used to create, retrieve, update and delete distributed databases.

 It synchronizes the database periodically and provides access mechanisms by

the virtue of which the distribution becomes transparent to the users.

 It ensures that the data modified at any site is universally updated.

 It is used in application areas where large volumes of data are processed and

accessed by numerous users simultaneously.

 It is designed for heterogeneous database platforms.

 It maintains confidentiality and data integrity of the databases.

Factors Encouraging DDBMS
The following factors encourage moving over to DDBMS −

 Distributed Nature of Organizational Units − Most organizations in the

current times are subdivided into multiple units that are physically distributed

over the globe. Each unit requires its own set of local data. Thus, the overall

database of the organization becomes distributed.

 Need for Sharing of Data − The multiple organizational units often need to

communicate with each other and share their data and resources. This demands

common databases or replicated databases that should be used in a

synchronized manner.

 Support for Both OLTP and OLAP − Online Transaction Processing (OLTP)

and Online Analytical Processing (OLAP) work upon diversified systems which

may have common data. Distributed database systems aid both these

processing by providing synchronized data.

 Database Recovery − One of the common techniques used in DDBMS is

replication of data across different sites. Replication of data automatically helps

in data recovery if database in any site is damaged. Users can access data from

other sites while the damaged site is being reconstructed. Thus, database

failure may become almost inconspicuous to users.

 Support for Multiple Application Software − Most organizations use a

variety of application software each with its specific database support. DDBMS

provides a uniform functionality for using the same data among different

platforms.

Advantages of Distributed Databases
Following are the advantages of distributed databases over centralized

databases.

Modular Development − If the system needs to be expanded to new
locations or new units, in centralized database systems, the action requires

substantial efforts and disruption in the existing functioning. However, in

distributed databases, the work simply requires adding new computers and

local data to the new site and finally connecting them to the distributed

system, with no interruption in current functions.

More Reliable − In case of database failures, the total system of
centralized databases comes to a halt. However, in distributed systems,

when a component fails, the functioning of the system continues may be at

a reduced performance. Hence DDBMS is more reliable.

Better Response − If data is distributed in an efficient manner, then user
requests can be met from local data itself, thus providing faster response.

On the other hand, in centralized systems, all queries have to pass through

the central computer for processing, which increases the response time.

Lower Communication Cost − In distributed database systems, if data is

located locally where it is mostly used, then the communication costs for

data manipulation can be minimized. This is not feasible in centralized

systems.

Adversities of Distributed Databases
Following are some of the adversities associated with distributed databases.

 Need for complex and expensive software − DDBMS demands complex and

often expensive software to provide data transparency and co-ordination across

the several sites.

 Processing overhead − Even simple operations may require a large number of

communications and additional calculations to provide uniformity in data across

the sites.

 Data integrity − The need for updating data in multiple sites pose problems of

data integrity.

 Overheads for improper data distribution − Responsiveness of queries is

largely dependent upon proper data distribution. Improper data distribution

often leads to very slow response to user requests.

Types of Distributed Databases
Distributed databases can be broadly classified into homogeneous and

heterogeneous distributed database environments, each with further sub-

divisions, as shown in the following illustration.

Homogeneous Distributed Databases

In a homogeneous distributed database, all the sites use identical DBMS

and operating systems. Its properties are −

 The sites use very similar software.

 The sites use identical DBMS or DBMS from the same vendor.

 Each site is aware of all other sites and cooperates with other sites to process

user requests.

 The database is accessed through a single interface as if it is a single database.

Types of Homogeneous Distributed Database

There are two types of homogeneous distributed database −

 Autonomous − Each database is independent that functions on its own. They

are integrated by a controlling application and use message passing to share

data updates.

 Non-autonomous − Data is distributed across the homogeneous nodes and a

central or master DBMS co-ordinates data updates across the sites.

Heterogeneous Distributed Databases

In a heterogeneous distributed database, different sites have different

operating systems, DBMS products and data models. Its properties are −

 Different sites use dissimilar schemas and software.

 The system may be composed of a variety of DBMSs like relational, network,

hierarchical or object oriented.

 Query processing is complex due to dissimilar schemas.

 Transaction processing is complex due to dissimilar software.

 A site may not be aware of other sites and so there is limited co-operation in

processing user requests.

Types of Heterogeneous Distributed Databases

 Federated − The heterogeneous database systems are independent in nature

and integrated together so that they function as a single database system.

 Un-federated − The database systems employ a central coordinating module

through which the databases are accessed.

Data Replication
Data replication is the process of storing separate copies of the database at

two or more sites. It is a popular fault tolerance technique of distributed

databases.

Advantages of Data Replication

 Reliability − In case of failure of any site, the database system continues to

work since a copy is available at another site(s).

 Reduction in Network Load − Since local copies of data are available, query

processing can be done with reduced network usage, particularly during prime

hours. Data updating can be done at non-prime hours.

 Quicker Response − Availability of local copies of data ensures quick query

processing and consequently quick response time.

 Simpler Transactions − Transactions require less number of joins of tables

located at different sites and minimal coordination across the network. Thus,

they become simpler in nature.

Disadvantages of Data Replication

 Increased Storage Requirements − Maintaining multiple copies of data is

associated with increased storage costs. The storage space required is in

multiples of the storage required for a centralized system.

 Increased Cost and Complexity of Data Updating − Each time a data item

is updated, the update needs to be reflected in all the copies of the data at the

different sites. This requires complex synchronization techniques and protocols.

 Undesirable Application – Database coupling − If complex update

mechanisms are not used, removing data inconsistency requires complex co-

ordination at application level. This results in undesirable application – database

coupling.

Some commonly used replication techniques are −

 Snapshot replication

 Near-real-time replication

 Pull replication

Fragmentation
Fragmentation is the task of dividing a table into a set of smaller tables.

The subsets of the table are called fragments. Fragmentation can be of

three types: horizontal, vertical, and hybrid (combination of horizontal and

vertical). Horizontal fragmentation can further be classified into two

techniques: primary horizontal fragmentation and derived horizontal

fragmentation.

Fragmentation should be done in a way so that the original table can be

reconstructed from the fragments. This is needed so that the original table

can be reconstructed from the fragments whenever required. This

requirement is called “reconstructiveness.”

Advantages of Fragmentation

 Since data is stored close to the site of usage, efficiency of the database system

is increased.

 Local query optimization techniques are sufficient for most queries since data is

locally available.

 Since irrelevant data is not available at the sites, security and privacy of the

database system can be maintained.

Disadvantages of Fragmentation

 When data from different fragments are required, the access speeds may be

very high.

 In case of recursive fragmentations, the job of reconstruction will need

expensive techniques.

 Lack of back-up copies of data in different sites may render the database

ineffective in case of failure of a site.

Vertical Fragmentation
In vertical fragmentation, the fields or columns of a table are grouped into

fragments. In order to maintain reconstructiveness, each fragment should

contain the primary key field(s) of the table. Vertical fragmentation can be

used to enforce privacy of data.

For example, let us consider that a University database keeps records of all

registered students in a Student table having the following schema.

STUDENT

Regd_No Name Course Address Semester Fees Marks

Now, the fees details are maintained in the accounts section. In this case,

the designer will fragment the database as follows −

CREATE TABLE STD_FEES AS

 SELECT Regd_No, Fees

 FROM STUDENT;

Horizontal Fragmentation
Horizontal fragmentation groups the tuples of a table in accordance to

values of one or more fields. Horizontal fragmentation should also confirm

to the rule of reconstructiveness. Each horizontal fragment must have all

columns of the original base table.

For example, in the student schema, if the details of all students of

Computer Science Course needs to be maintained at the School of

Computer Science, then the designer will horizontally fragment the

database as follows −

CREATE COMP_STD AS

 SELECT * FROM STUDENT

 WHERE COURSE = "Computer Science";

Hybrid Fragmentation
In hybrid fragmentation, a combination of horizontal and vertical

fragmentation techniques are used. This is the most flexible fragmentation

technique since it generates fragments with minimal extraneous

information. However, reconstruction of the original table is often an

expensive task.

Hybrid fragmentation can be done in two alternative ways −

 At first, generate a set of horizontal fragments; then generate vertical fragments

from one or more of the horizontal fragments.

 At first, generate a set of vertical fragments; then generate horizontal fragments

from one or more of the vertical fragments.

	Distributed DBMS - Concepts
	Features
	Distributed Database Management System
	Features

	Factors Encouraging DDBMS
	Advantages of Distributed Databases
	Adversities of Distributed Databases
	Types of Distributed Databases
	Homogeneous Distributed Databases
	Types of Homogeneous Distributed Database
	Heterogeneous Distributed Databases
	Types of Heterogeneous Distributed Databases

	Data Replication
	Advantages of Data Replication
	Disadvantages of Data Replication

	Fragmentation
	Advantages of Fragmentation
	Disadvantages of Fragmentation

	Vertical Fragmentation
	Horizontal Fragmentation
	Hybrid Fragmentation

