PARTIAL DIFFERENTIAL EQUATIONS

Partia differential eguations are those equations which
contain partial derivatives,independent V ariables and dependent
variables.

Theindependent variableswill be denoted by ‘X & ‘y’and
dependent variable by °“z’.

T he Partial differentia coefficients are denoted asfollows
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ORDER:

Order of partia differentia eqguations Is the same as that
of the highest differential coefficientsin it.



METHODSOE FORMING PARTIAL DIFFERENTIAL
EQUATION

T he PDE’S formedby 2 methods

1) By daiminating arbitrary constants
2) By daiminaing arbitrary functions

Methods of eliminating arbitrary constants

Ex;-form of PDE from XZ2+y°+ (Zz-0©) 2=&r
X24+Yy2+ (Z-C) 2= e i = (1)
The above equation contains 2 arbitrary constantsa & c

Differentiate equation (1) partial w.r.t, X we get

2x+2(z—c)% = 0
X+ (z-¢) p=0 ....... = (2)
Differentiate (1) partially w.r.t, ywe get

2y+2(z- C)Z—j =0



Eliminating c from (2) and (3)
2).....= z-C—=-X/p
Substituting abovevauein (3) we get
Y -x/p*gq=0
Y * p-x*qg=0
Methods of aeliminating of arbitrary functions
Ex;-form of PDE fromz=f(x2-y?2)

z=f(x2-y2) .......... > (1)

Differentiate (1) partially w.r.t, X and y we get
P=2Z = 0Py 2% .= (D)
a=5= =102y (2y) ... >(3)

Dividing (2) and (3) we get
P/g=-x/y (or) p*y=-g*Xx
Y p)+(C<g)=0



LAGRANGE'SLINEAREQUATIONISAN EQUATION OF THE
TYPE P*p +OQO*g= R. where P, Q, R arethefunctions of %, y, z and

_ 0Oz _Oz
P Ix » oy
Proof, - P p+ Q* g=R ......... = (1)

T he form of the equation is obtained by eiminating an arbitrary
function f from

Whereu, v, w, arethefunctions of %X, vy, zZ.

Differentiating (2) partially w .r. t, x and y

Of ((Ou du az) Of ( Ov ov oz

— — sk — — — S — rm— _>

ou \9x + oz Ox + ov \9x -+ oz Ox O ...... (3)
o ou ou oz o o v ov oz

2f (22 4 2= + 2L (22 4 2v =0 ....... > (4)
ou oy oz oy ov \Oy oz oy

Let usaeliminate ? and % from (3) and (4)

u

o ou ou o ov ov

From (3, SLGE+SE pd) = — 2552 +52P)nnn > (5)
) o o ) ) o

From (4), ai az; = az q) o a]; a; = a: q) e = (6)



Dividing (5) and (6) we get

au+au .au+au _av+avpoav
o x oz T oy 0z1~ Bx oz T Oy
ou ou ov ov L ou ou ov ov
G+ P (2+52a) =(5+32a) (E+32 P
auxav+auxav +aux Xav+auxav
dx Oy " ox oz 1T 6z P 5y T oz Tz P4
_auxav+auxav +au Xav
Oy ox oy oz P oz 4 ox
ou ov ou ov ou ov ou ov ou ov
(ayxaz—zxa—y)P+(zxa—axz 4= 5% =%

7)
If (1) and (V) arethe same then coefficients p, q is equal

Ju ov Jdu ov
P=22 < 2 28 5 ZY

oy o0z oz oz

Jou ov Ju ov

Q=—— X< — = X —

oz ox ox oz

Ju ov Ju ov
R=21 > 2¥ 22 ¢

— >
ox oy oy ox



Now suppose u=cl and v=c2 are 2 solutions where cl and c2 are
constants

Differentiating u=cl and v=c2

Ju Jdu Jdu .

- dx + oy dy + - dz=0 ....... = (9)
O ax+ X ay+ Y az= o ~ (10)
ax oy Y gz T Hoe

Solving (9) and (10) we get

Ju ov Ju ov Ju ov Jdu ov Ju ov Ju ov
oy oz oz oy oz ox ox oz ox oy oy ox
........ > (11)

From (8) and (10) we get

P Q R
Solutions of these equations are u=cl and v=c2

Thereforef(u, v)= O isthe required solution of (1)



METHOD OF MULTIPLIERS

dx dy dz

Let theauxiliary equation be — = - — R

L, m, Nn may constants (or) functions of X, y, z then we have

ax =d_y =E = ldx+ mdy + ndz = 1P+ mQ + nR
P Q R

L, m, narechosen in such away that

L*P+ m*Q+ Nn*R=0

Thusl dx+ mdy +ndz= 0O

Solvethis differential equation, if the solutionis u=cl
Similarly choose another set of multipliers(l1, ml1, nl)

ANdif the second solution is v=c2

T hereforerequired solutionisft (u, v) =0
Example; - solve (mz— ny) + (nx — ly)— —ly — mx

Here the auxiliary equations are

dx —mx—ny=dy —nx—lz=dz = ly—mx



Using the multipliersx, y, z we get

Each fraction =xdx+ vy dy+ z dz — x(mz— ny) + (y(nx—1z) +
z(ly — mx)

—x dz+y dy+ zdz =0
xdx+ydy+zdz=0

On integration

Againusng multipliers|, m, n we get

Each fraction =ldx+ m dy+ n dz = l(mz—ny) + m(nx—1z) +
n(ly — mx)

=ldx+ m dy+ndz +— O

ldx+ mdy+ n dz= 0



On integration
LX+my+nz=c2

Hencefrom (1) and (2) therequired solution is f(x2+y2+2z2, IX+my+nz)=0

APPLICATIONSOF PDEs:

1. WAVE EQUATIONS

The smplest situation to giverise to the one-dimensional wave equation
IS the motion of a Stretched string - specifically the transverse vibrations
of a string such asthe string of a Musica instrument. Assume that a
string is placed along the x—axis, is stretched and then Fixed at ends
X=0andx=L it is then deflected and at some instant, which we call t=0, is
Rdaeased and allowed to vibrate. The qguantity of interest is the deflection
u of the string at any Point X, O<x<L, and at any time t>0. We write u=u(x
t). Thediagram shows a possible Displacement of the string at a fixed
timet.






Subject to various assumptions:--
1. Neglecting damping forces such as air resistance
2. Neglecting the weight of the string

3. That the tension in the string is tangential to the curve of the string
at any point

4. That the string performs small transverse oscillations i.e. every
particle of the string moves

Strictly vertically and such that its deflection and slope as every point
on the string is small.

.-+ it can be shown, by applying Newton’s Law of motion to a small
segment of the string, that u satisfies the PDE
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where ¢ = —, p being the mass per unit length of the string and T being the (constant)
0

horizontal component of the tension in the string. To determine u(z, t) uniquely, we must also

know

1. The initial definition of the string at time t=0 at which it is released
2.The initial velocity of the string. Thus we must be given initial

conditions
w (2,.0) = flz) 0<z< L (Initial position)
ou e ;
T(;I_:, () = ) O0<x< L (Initial velocity)
¢

Where f(x) and g(x) are known. These two initial conditions are in
addition to the two boundary conditions



U (0, t) =u (L, t) =0 for t=0 which indicate that the string is fixed at each
end. In the specific example discussed in the previous Section we had

f(x) = ug sin (i—i)

g(lx) =0 (string initially at rest).

The PDE (1) is the (undamped) wave equation. We will discuss solutions
of it for various initial conditions later. More complicated forms of the

wave equation would arise if some of the assumptions were modified.
For examnle:

(a) i = ke — g if the weight of the string was allowed for

d {9}_‘2 =C {’J;(:? g 1I the welgnt « 11€ String was atlowed I0r,

0%u zszu- ou _ _ _ _ _
(b) -5 = "7z — a7 if a damping force proportional to the velocity of the string

ot dr ot _

(with damping constant «) was included.



This is referred to as the one-dimensions | wave equation because only

one space variable,x,is present. The two-dimensional (undamped) wave
equation is, in Cartesian coordinates,

0*u 5 [ 0%u | 0“u
— = | — + —
ot2 ox? Oy

This arises for example when we model the transverse vibrations of a
membrane. See Figures below. Here u(x, y, t )is the definition of a point

(X, y Jon the membrane at time t. Again, a boundary condition must be
specified: commonly

u=0 t>0 on the boundary of the membrane, if this is fixed (clamped).
Also initial condition must given



% (&9, 0) = Flz.5) (initial position)

t_‘}u . :
Yy) (initial velocity)

Circular membrane, such as a drumhead, polar coordinates defined by
x=r cosB, y=RsinO would be more convenient than Cartesian. In this
case (2) becomes

9*u 5 O’y 10u 1 0°u
—_— = —_ — (< r< R (< 29
e (3r'9+fdr +'330‘3) ISrs A /SO

for a circular membrane of radius R.






2. HEAT CONDUCTION EQUATIONS
Consider along thin bar, or wire, of constant cross-section and of
homogeneous material oriented along the x—axis.

.

o — U e — L

lmagine that the bar is thermally insulated laterally and is sufficiently thin
that heat flows (by conduction) only in thex—direction. Then the
temperature u at any point in the bar degpend only on the x—coordinate of
the point and the timet.By applying the principle of consarvation of
energy it can be shown that u(x, t)satisfies the PDE

Ju A u O=a=1

It P e e >0




Where k is a positive constant. In fact k, sometimes called the thermal
diffusivity of the bar, is given by

b A

Sp

Where k=thermal conductivity of the material of the bar
s=specific heat capacity of the material of the bar
p=density of the material of the bar.

The PDE (3) is called the one-dimensional heat conduction equation (or,
in other contexts where

It arises, the diffusion equation).



* Both equations involve second derivatives in the space variable x but
whereas the wave equation has a second derivative in the time
variable to the heat conduction equation has only a first derivative
int. This means that the solutions of (3) are quite different in form
from those of (1) and we shall study
them separately later. The fact that (3) is first order in the means that
only one initial condition at t =0 is needed, together with two
boundary conditions, to obtain a unique solution. The usual initial
condition specifies the initial temperature distribution in the bar
u(x,0) =f(x) Where f(x)is known. Various types of boundary
conditions at x=0and x=L are possible. For example:



(a) w(0,t) = T1 and w(L,T) = 7% (ends of the bar are at constant temperatures 77 and

15).
Au Ou . . : - ;
(b) a—([-]-. B)= r:;_(L t) = 0 which are insulation conditions since they tell us that there
r da

is no heat flow through the ends of the bar.

Asyou would expect, there are two-dimensional and three-dimensional
forms of the heat conduction equation. The two dimensiona version of (3)

IS
b LT, I Fu

— E : | —
ot dxr2 = Oy?

Where u(X, vy, t) isthe temperature in aflat plate. The plate is assumed to
bethin and insulated on itstop and bottom surface so that no heat flow
occurs other than in the O xy plane. Boundary conditions and an initial
condition are needed to give unique solutions of (4). For exampleif the
plate is rectangular:



typical boundary conditions might be

ulz,0)=T, 0 <z <a(bottom side at fixed temperature)
ou
01
ule,b) =Ty, 0 < <atopside at fixed temperature)

(a,y)=0  0<y<b(right hand side insulated)

ul0,y)=0  0<y<b(left hand side at zero fixed temperature).

An initial condition would have the form u(z,y,0) = f(z,y), where f is a given function.



r=da



3. TRANSMISSION LINE EQUATONS

INn along electrical cable or atdephone wire both the current and voltage
depend upon position

Alongthe wire as wdl asthetime.

i (@, 1)

I vix,t)

It is possible to show, usng basic laws of eectrical circuit theory, that the
eectrical current

—_—

0 (J:Ff:]

(X, t)satisfies the PDE

%4 32 i
— = Fa - ) = |- FRC 1
da2 (\ffﬂfﬁ L1 6 )Ejf £




Wherethe constants R, L, C and G are, for unit length of cable,
regpectivaly the resi stance, inductance, capacitance and |eakage
conductance. Thevoltage v(X, t) also satisfies (5). Special cases of (5)
arise in particular situations. For asubmarinecable G isnegligble and

frequencies arelow so inductive effects can also be neglected. In this case
(5) becomes

S %
— = R —
=< It

Which is called the submarine equation or telegraph equation For high

frequency alternating currents, again with negligible leakage, (5) can be
approximated by

Vo o
= O ——
ox t=

Which is called the high frequency line equation



4. LAPLACE TRANSFORMS
If you look back at the two-dimensional heat conduction equation (4)

Jdu _ 7 I u | A<
ot oxr2 = Oy

it is clear that if the heat How is steady, i.e. time independent, then B O so the temperature
C

w(ax,y) is a solution of

N A% u
- + —— =0 S
ox? dy= (8)

(8) Is thetwo-dimensional Laplace equation. Both this and its
three-dimensiona counterpart

I r N u l Hu q
- p I p= - | . = —
= Ay? =2

Arisein awide variety of applications, quite apart from steady state heat
conduction theory.



Sincetime does not arisein (8) or (9) it isevident that Laplace’s equation
Is always a mode

For equilibrium situations. In any problem involving Laplace’s equation
weare interested in

Solving it in aspecific region R for given boundary conditions. Since
conditions may involve

(a) u specified on the boundary curve C' (two dimensions) or boundary surface S (three
dimensions) of the region R. Such boundary conditions are called Dirichlet condi-

tions.
" , ou o
(b) The derivative of u normal to the boundary, written —, specified on C or S. These
n
are referred to as Neumann boundary conditions.

(¢) A mixture of (a) and (b).



Some areasin which Laplace’s equation arises are

(a) Electrostatics (u being the eectrostatic potential in acharge free
region)

(b) Gravitation (u being the gravitational potential in free space)
(c) Steady state flow of in viscid fluids

(d) Steady state heat conduction (as adready discussed.)

Other important PDES in science and engineering

1. Poisson’s equation

% u O*u

ox?  Oy?

= f(%,%) (two-dimensional form)

where f(x,y) is a given function. This equation arises in electrostatics, elasticity theory
and elsewhere.



). Helmholtz's equation

0 3‘3
? (9

Hiu=0 (two dimensional form)

which arises In wave theory.



3. Schrodinger’s equation

h? 0% ' 0% . 0%
|

— E,//,
8m2m \ 022  Oy2 = 022 /

which arises in quantum mechanics. (h is Planck’s constant.)

4. Transverse vibrations in a homogeneous rod

,0'u  J*u
a”—

Ot Ca o2 0

where u(x,t) is the displacement at time ¢ of the cross-section through .

All the PDEs we have discussed are second order (because the highest order derivatives that
arise are second order) apart from the last example which is fourth order.



