
PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations are those equations which
contain partial derivatives,independent Variables and dependent
variables.

The independent variables will be denoted by ‘x’ & ‘y’ and
dependent variable by ‘z’.

The Partial differential coefficients are denoted as follows                    =r,
                  

ORDER:

Order of partial differential equations is the same as that
of the highest differential coefficients in it.



METHODS OF FORMING PARTIAL DIFFERENTIAL
EQUATION

The PDE’S formedby 2 methods

1) By eliminating arbitrary constants
2) By eliminating arbitrary functions

Methods of eliminating arbitrary constants

Ex;-form of PDE from x2+y2+ (z-c) 2=a2

X2+y2+ (z-c) 2=a2 …………….> (1)

The above equation contains 2 arbitrary constants a & c

Differentiate equation (1) partial w.r.t, x we get

2x+2(z-c)
      

X+ (z-c) p=0…….> (2)

Differentiate (1) partially w.r.t, ywe get

2y+2(z-c)
      

Y+ (z-c) q=0………> (3)



Eliminating c from (2) and (3)

(2)…..> z-c=-x/p

Substituting above value in (3) we get

Y-x/p*q=0

Y*p-x*q=0

Methods of eliminating of arbitrary functions

Ex;-form of PDE fromz=f(x2-y2)

z=f(x2-y2) ……….> (1)

Differentiate (1) partially w.r.t, x and y we get

p=
      ’(x2-y2) 2x…..> (2)

q=
      ’(x2-y2) (-2y)……>(3)

Dividing (2) and (3) we get

P/q=-x/y (or) p*y=-q*x

(Y*p)+(x*q)=0



LAGRANGE’S LINEAR EQUATION IS AN EQUATION OF THE
TYPE P*p +Q*q= R. where P, Q, R are the functions of x, y, z and

p=
    , q=

    
Proof; - P* p + Q* q= R………> (1)

The form of the equation is obtained by eliminating an arbitrary
function f from

F (u, v) = 0……..> (2)

Where u, v, w, are the functions of x, y, z.

Differentiating (2) partially w .r. t, x and y                                       …….> (3)

                                       …….> (4)

Let us eliminate
           from (3) and (4)

From (3),
    (

                             …….> (5)

From (4),
                                   



Dividing (5) and (6) we get                                           
(
                                                                                                                                    

                                                             ……..>

(7)

If (1) and (7) are the same then coefficients p, q is equal

P=
∂u∂y × ∂v∂z ∂u∂z × ∂v∂z

Q=
∂u∂z × ∂v∂x  ∂u∂x × ∂v∂z

R=
∂u∂x × ∂v∂y  ∂u∂y × ∂v∂x



Now suppose u=c1 and v=c2 are 2 solutions where c1 and c2 are
constants

Differentiating u=c1 and v=c2∂u∂x dx+ ∂u∂y dy+ ∂u∂z dz= 0 …….> (9)∂v∂x dx+ ∂v∂y dy+ ∂v∂z dz= 0   10

Solving (9) and (10) we get

dx ÷
∂u∂y × ∂v∂z  ∂u∂z × ∂v∂y =dy ÷ ∂u∂z × ∂v∂x ∂u∂x × ∂v∂z = dz ÷ ∂u∂x × ∂v∂y  ∂u∂y × ∂v∂x

……..> (11)

From (8) and (10) we get

dx

P
=
dy

Q
=
dz

R

Solutions of these equations are u=c1 and v=c2

Therefore f(u, v)= 0 is the required solution of (1)



METHOD OF MULTIPLIERS

Let the auxiliary equation be
dx

P
=

dy

Q
=

dz

R

L, m, n may constants (or) functions of x, y, z then we have

dx

P
=
dy

Q
=
dz

R
= ldx+mdy+ ndz÷ lP+ mQ+ nR

L, m, n are chosen in such a way that

L*P+ m*Q+ n*R=0

Thus l dx+ m dy +n dz= 0

Solve this differential equation, if the solution is u=c1

Similarly choose another set of multipliers (l1, m1, n1)

And if the second solution is v=c2

Therefore required solution is f (u, v) = 0

Example; - solve mz ny ∂z∂x+ nx ly ∂z∂y  ly mx
Here the auxiliary equations are

dx ÷mx ny dy ÷ nx lz  dz ÷ ly mx



Using the multipliers x, y, z we get

Each fraction =x dx+ y dy+ z dz ÷ x mz ny +(y nx lz +z ly mx 
=x dz+ y dy+ z dz ÷ 0

x dx+ y dy+ z dz= 0

0n integration

X2+y2+z2= c1 …….> (1)

Again using multipliers l, m, n we get

Each fraction =l dx+m dy+ n dz ÷ l mz ny +m nx lz +

n ly mx
=l dx+m dy+ n dz ÷ 0

l dx+m dy+ n dz= 0



On integration

L x +m y+ n z= c2

Hence from (1) and (2) the required solution is f(x2+y2+z2, lx+my+nz)=0

APPLICATIONS OF PDEs:

1. WAVE EQUATIONS

The simplest situation to give rise to the one-dimensional wave equation
is the motion of a Stretched string - specifically the transverse vibrations
of a string such as the string of a Musical instrument. Assume that a
string is placed along the x−axis, is stretched and then Fixed at ends
x=0andx=L it is then deflected and at some instant, which we call t=0, is
Released and allowed to vibrate. The quantity of interest is the deflection
u of the string at any Point x, 0≤x≤L, and at any time t>0. We write u=u(x,
t). The diagram shows a possible Displacement of the string at a fixed
time t.





Subject to various assumptions··· 

1. Neglecting damping forces such as air resistance 

2. Neglecting the weight of the string 

3. That the tension in the string is tangential to the curve of the string 
at any point 

4. That the string performs small transverse oscillations i.e. every 
particle of the string moves 

Strictly vertically and such that its deflection and slope as every point 
on the string is small.  

··· it ĐaŶ ďe shoǁŶ, ďǇ applǇiŶg NeǁtoŶ’s Laǁ of ŵotioŶ to a sŵall 
segment of the string, that u satisfies the PDE 

 



 

 

 

 

1. The initial definition of the string at time t=0 at which it is released                     
2.The initial velocity of the string. Thus we must be given initial 
conditions 

 

     

Where f(x) and g(x) are known. These two initial conditions are in 
addition to the two boundary conditions 



U ;0, tͿ =u ;L, tͿ =0 for t≥0 ǁhiĐh iŶdiĐate that the striŶg is fiǆed at eaĐh 
end. In the specific example discussed in the previous Section we had 

 

 

 

 

The PDE (1) is the (undamped) wave equation. We will discuss solutions 
of it for various initial conditions later. More complicated forms of the 
wave equation would arise if some of the assumptions were modified. 
For example: 

 



This is referred to as the one-dimensions l wave equation because only 
one space variable,x,is present. The two-dimensional (undamped) wave 
equation is, in Cartesian coordinates, 

 

                                                                           

 

This arises for example when we model the transverse vibrations of a 
membrane. See Figures below. Here u(x, y, t  )is the definition of a point 
(x, y )on the membrane at time t. Again, a boundary condition must be 
specified: commonly 

    u=0 t≥0 oŶ the ďouŶdarǇ of the ŵeŵďraŶe, if this is fiǆed ;ĐlaŵpedͿ. 
Also initial condition must given                   



 

 

 

Circular membrane, such as a drumhead, polar coordinates defined by 
ǆ=r Đosθ, Ǉ=RsiŶθ ǁould ďe ŵore ĐoŶǀeŶieŶt thaŶ CartesiaŶ. IŶ this 
case (2) becomes 

 

 

   

for a circular membrane of radius R. 





2. HEAT CONDUCTION EQUATIONS
Consider a long thin bar, or wire, of constant cross-section and of
homogeneous material oriented along the x−axis.

Imagine that the bar is thermally insulated laterally and is sufficiently thin
that heat flows (by conduction) only in the x−direction. Then the
temperature u at any point in the bar depend only on the x−coordinate of
the point and the time t.By applying the principle of conservation of
energy it can be shown that u(x, t)satisfies the PDE



Where k is a positive constant. In fact k, sometimes called the thermal 
diffusivity of the bar, is given by 

 

 

Where κ=therŵal ĐoŶduĐtiǀitǇ of the ŵaterial of the ďar 
s=specific heat capacity of the material of the bar 

ρ=deŶsitǇ of the ŵaterial of the ďar. 
The PDE (3) is called the one-dimensional heat conduction equation (or, 
in other contexts where 

It arises, the diffusion equation). 

 



• Both equations involve second derivatives in the space variable x but 

whereas the wave equation has a second derivative in the time 

variable to the heat conduction equation has only a first derivative 

int. This means that the solutions of (3) are quite different in form 

from those of                                                        (1) and we shall study 

them separately later. The fact that (3) is first order in the means that 

only one initial condition at t =0 is needed, together with two 

boundary conditions, to obtain a unique solution. The usual initial 

condition specifies the initial temperature distribution in the bar 

u(x,0) =f(x)            Where f(x)is known. Various types of boundary 

conditions at x=0and x=L are possible.                             For example: 



As you would expect, there are two-dimensional and three-dimensional
forms of the heat conduction equation. The two dimensional version of (3)
is

Where u(x, y, t) is the temperature in a flat plate. The plate is assumed to
be thin and insulated on its top and bottom surface so that no heat flow
occurs other than in the O xy plane. Boundary conditions and an initial
condition are needed to give unique solutions of (4). For example if the
plate is rectangular:







3. TRANSMISSION LINE EQUATONS

In a long electrical cable or a telephone wire both the current and voltage
depend upon position

Along the wire as well as the time.

It is possible to show, using basic laws of electrical circuit theory, that the
electrical current

I(x, t )satisfies the PDE



Where the constants R, L, C and G are, for unit length of cable,
respectively the resistance, inductance, capacitance and leakage
conductance. The voltage v(x, t) also satisfies (5). Special cases of (5)
arise in particular situations. For a submarine cable G is negligible and
frequencies are low so inductive effects can also be neglected. In this case
(5) becomes

Which is called the submarine equation or telegraph equation For high
frequency alternating currents, again with negligible leakage, (5) can be
approximated by

Which is called the high frequency line equation



4. LAPLACE TRANSFORMS
If you look back at the two-dimensional heat conduction equation (4)

(8) Is the two-dimensional Laplace equation. Both this and its
three-dimensional counterpart

Arise in a wide variety of applications, quite apart from steady state heat
conduction theory.



Since time does not arise in (8) or (9) it is evident that Laplace’s equation
is always a model

For equilibrium situations. In any problem involving Laplace’s equation
we are interested in

Solving it in a specific region R for given boundary conditions. Since
conditions may involve



Some areas in which Laplace’s equation arises are

(a) Electrostatics (u being the electrostatic potential in a charge free
region)

(b) Gravitation (u being the gravitational potential in free space)

(c) Steady state flow of in viscid fluids

(d) Steady state heat conduction (as already discussed.)

Other important PDEs in science and engineering






