ADD ON COURSE 2022-23

BIO-FERTILIZERS AND GROWTH REGULATORS

Duration: 35 Hours

Department of Botany

Course code: BT-BGR

Course Description:

This course provides an in-depth understanding of bio-fertilizers, growth regulators, and their applications in agriculture. Students will learn about the principles, types, and modes of action of bio-fertilizers and growth regulators. Topics include microbial inoculants, nitrogen fixation, phosphorus solubilisation, plant growth-promoting substances, and their role in sustainable agriculture. Through lectures, laboratory sessions, and field visits, students will gain practical knowledge and skills in the use of bio-fertilizers and growth regulators for crop production.

Course Objectives:

- 1. Understand the concept and importance of bio-fertilizers and growth regulators.
- 2. Learn about different types of bio-fertilizers and their microbial agents.
- 3. Explore the modes of action of bio-fertilizers in nutrient cycling and soil fertility improvement.
- 4. Understand the role of growth regulators in plant growth and development.
- 5. Gain knowledge of the application methods and dosage of bio-fertilizers and growth regulators.
- 6. Evaluate the potential benefits and limitations of using bio-fertilizers and growth regulators in crop production.
- 7. Apply knowledge and skills learned to solve practical problems in agriculture

Module 1: 07 Hours

Introduction to Bio-Fertilizers and Growth Regulators

- Definition and significance of bio-fertilizers and growth regulators
- Role in sustainable agriculture and environmental conservation
- Regulatory frameworks and certification standards

Nitrogen-Fixing Bio-Fertilizers

- Biological nitrogen fixation and nitrogen cycle
- Types of nitrogen-fixing bacteria and their symbiotic associations
- Role of Rhizobium, Azotobacter, and Azospirillum in nitrogen fixation

Phosphorus-Solubilizing Bio-Fertilizers

- Phosphorus cycle in soil and plant nutrition
- Phosphate-solubilizing microorganisms (PSMs)
- Mechanisms of phosphorus solubilisation and plant uptake

Module 2: 07 Hours

Potassium- and Micronutrient-Solubilizing Bio-Fertilizers

- Role of potassium and micronutrients in plant growth and development
- Microbial agents involved in potassium and micronutrient solubilisation
- Benefits and limitations of using solubilizing bio-fertilizers

Plant Growth-Promoting Substances (PGPS)

- Types of PGPS (e.g., auxins, cytokinins, gibberellins)
- Mode of action and physiological effects on plant growth
- Application methods and dosage of PGPS in agriculture

Biocontrol Agents and Disease Suppressors

- Role of biocontrol agents in plant disease management
- · Mechanisms of action against plant pathogens
- Integration of biocontrol agents with bio-fertilizers for disease suppression

Module 3:

08 Hours

Application Methods and Dosage

- Seed inoculation and soil application techniques
- Foliar spray and drip irrigation methods
- Dosage calculation and application timing considerations

Field Visits and Demonstrations

- Visit to agricultural research stations or bio-fertilizer production facilities
- Demonstration of bio-fertilizer application methods in the field

Environmental and Ecological Impacts

- Environmental benefits and risks of bio-fertilizers and growth regulators
- Impact on soil health, biodiversity, and ecosystem services
- Strategies for mitigating potential negative impacts

Module 4:

08 Hours

Case Studies in Bio-Fertilizer Applications

- Success stories and case studies of bio-fertilizer adoption
- Lessons learned and best practices in bio-fertilizer usage
- Challenges and opportunities for scaling up bio-fertilizer adoption

Regulatory Compliance and Certification

- Regulatory requirements for bio-fertilizer production and marketing
- Certification standards and quality control measures
- Role of government agencies and industry associations in regulation

Future Directions and Emerging Trends

- Innovations in bio-fertilizer and growth regulator research
- Role of biotechnology and genetic engineering in bio-fertilizer development
- Potential applications in climate-smart agriculture and sustainable intensification

Textbook:

"Bio-Fertilizers and Organic Farming" by Yadvinder Singh and H.P.S. Makkar

References:

- 1. "Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications" edited by Dhananjaya Pratap Singh and Harikesh Bahadur Singh
- 2. "Plant Growth Regulators in Agriculture and Horticulture: Their Role and Commercial Uses" edited by Amarjit Basra

