ADD ON COURSE 2023-24 EMBEDDED CONTROLLERS and RTOS

Duration: 31 Hours

Course code: EC-EMC

Course Description:

This course introduces students to the design, programming, and interfacing of embedded systems using microcontrollers. Students will learn about the architecture and operation of microcontrollers, programming in C/C++, real-time operating systems (RTOS), and interfacing with peripherals and sensors. Through hands-on projects and laboratory exercises, students will gain practical experience in developing embedded systems for various applications.

Course Objectives:

- 1. Understand the architecture and operation of microcontrollers.
- 2. Learn programming techniques for embedded systems using C/C++.
- 3. Explore real-time operating systems (RTOS) and their applications.
- 4. Develop skills in interfacing microcontrollers with peripherals and sensors.
- 5. Design and implement embedded systems for specific applications.
- 6. Gain hands-on experience through laboratory exercises and projects.
- 7. Apply knowledge of embedded controllers to solve real-world problems.

Module 1: 06 Hours

Introduction to Embedded Systems

- Definition and characteristics of embedded systems
- Overview of microcontrollers and their applications
- Introduction to development tools and software

Microcontroller Architecture

- CPU architecture and instruction set
- Memory organization (ROM, RAM, Flash)
- Input/output (I/O) ports and peripheral interfaces

Module 2: 07 Hours

Programming in C/C++ for Embedded Systems

- Basics of C/C++ programming language
- Data types, variables, and operators
- Control structures (loops, conditionals)

Interrupts and Timers

- Interrupt handling mechanisms
- Timer/counters and their applications
- Implementing interrupts in embedded systems

Module 3: 08 Hours

Real-Time Operating Systems (RTOS)

- Overview of real-time operating systems
- Task scheduling and multitasking
- Inter-task communication and synchronization

Interfacing with Peripherals

- Serial communication (UART, SPI, I2C)
- Analog-to-digital conversion (ADC)
- Pulse-width modulation (PWM)

Module 4:

08 Hours

Communication Protocols

- Wireless communication protocols (Bluetooth, Wi-Fi)
- Internet of Things (IoT) protocols (MQTT, CoAP)
- Implementing communication protocols in embedded systems

Memory Management and Optimization

- Memory management techniques
- Code optimization for embedded systems
- Power management and low-power design

Embedded System Design

- Design considerations and trade-offs
- Project planning and implementation
- Testing and debugging techniques

Textbook:

"Embedded Systems: Introduction to ARM Cortex-M Microcontrollers" by Jonathan W. Valvano

References:

- 1. "Programming Embedded Systems in C and C++" by Michael Barr
- 2. "RTOS Programming: Concepts for Microcontroller" by Prasad Gudem

